Maths Transition Workbook

GCSE to A-Level

Dear new Year 12 Maths student,

The activities in this booklet have been designed to help consolidate the work you have already done for GCSE and help prepare you for the work you will study for AS level mathematics.

You should see what is contained in this booklet as the minimum requirement for being able to cope with AS level Maths, and you should make sure you master all the topics in here.

All work must be completed and submitted to your Pure Maths teacher by week beginning Monday 15th September 2025.

You will not be retaught these GCSE topics in any Year 12 lesson and you will be tested on them at A Level

Your teacher will check that it has been done to a high standard and **every question** must be completed with full working shown.

In this booklet, there are a range of questions from key topics that you will have seen in GCSE and will be helpful for AS Level and A-Level.

Each topic has three sections:

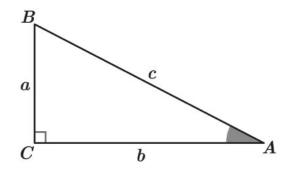
- Introduce questions allow you to practice the key concepts.
- Strengthen questions build on your knowledge of the key concepts.
- Deepen questions will challenge your understanding.

Unless otherwise indicated, you may use a calculator.

Key facts and formulae:

The Quadratic formula:

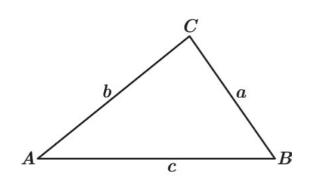
The solution of $ax^2 + bx + c = 0$


where $a \neq 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Trigonometry:

In any right-angled triangle ABC where a, b and c are the length of the sides and c is the hypotenuse:


$$\sin A = \frac{a}{c}$$
 $\cos A = \frac{b}{c}$ $\tan A = \frac{a}{b}$

In any triangle ABC where a, b and c are the length of the sides:

sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Q1 Expand and fully simplify $\sqrt{5}(\sqrt{5} + \sqrt{7})$

Answer: _____

Q2 Rationalise the denominator of $\frac{2\sqrt{5}}{\sqrt{6}}$ Give your answer in its simplest form.

Answer:

Q3 Expand and fully simplify $(6 + \sqrt{5})(1 + \sqrt{5})$

Q4 Write $(5 + \sqrt{12})(11 + \sqrt{3})$ in the form $a + b\sqrt{3}$, where a and b are integers.

Answer	
Aliswei.	

Q5 Rationalise the denominator of $\frac{1+\sqrt{2}}{\sqrt{2}}$

Give your answer as a fraction in its simplest form.

Q1 Expand and fully simplify $(2\sqrt{6} - 5\sqrt{2})^2$

Answer:

Q2 Rationalise the denominator of $\frac{15 + \sqrt{3}}{10\sqrt{3}}$

Give your answer as a fraction in its simplest form.

Q3 Rationalise the denominator of $\frac{2\sqrt{7}}{3+\sqrt{7}}$

Give your answer in its simplest form.

Q4 Write $\sqrt{12} + \frac{33}{\sqrt{3}}$ in the form $r\sqrt{3}$, where r is an integer.

Answer: _____

Q1 Expand and fully simplify $(4 + \sqrt{7})^2 - (4 - \sqrt{7})^2$

Answer:			

Q2 Work out the value of x in the equation below.

$$x\left(\sqrt{11}-2\right)=21$$

Give your answer in the form $a+b\sqrt{11}$, where a and b are integers.

nswer: _......

Q3 Given that h is a prime number, rationalise the denominator of $\frac{5h - \sqrt{h}}{\sqrt{h}}$ Give your answer in its simplest form.

Answer:			

Q4 Calculate the unknown side length, in metres, of the rectangle below.

Give your answer in its simplest form, rationalising the denominator if necessary.

$$(\sqrt{3} + 1) \text{ m}$$
?
area = $(7 - 2\sqrt{3}) \text{ m}^2$

_	
Answer	m

Q1 Expand and fully simplify (m + 9)(m + 2)

Answer:

Q2 Expand and fully simplify (2a + 3)(4a + 5)

Q3 Expand and fully simplify (x - 3)(4x + 9)

Answer: _____

Q4 Expand and fully simplify $(6n - 5)^2$

Q1 Expand and fully simplify 2(4d + 5)(3d + 1)

Answer:

Q2 Expand and fully simplify $(x + 1)(x^2 + 3x + 5)$

Q3 Expand and fully simplify (3n + 4)(5n + 2) + 5(n + 7)

Answer:

Q4 Expand and fully simplify (t-2)(t+5)(t-4)

Q1 Expand and fully simplify (2x + 5)(4x - 3)(5x - 4)

Answer:

Q2 Work out the values of a, b and c in the identity below.

$$(3x - 1)(x + 2)(ax + b) = 15x^3 + 16x^2 - 25x + c$$

Answer: a = b = c =

Write the following expression in the form $\frac{1}{ax^b} + \frac{1}{cy^d}$ where a, b, c, and d are integers.

$$\left(\frac{1}{5x} + \frac{1}{4y}\right)\left(\frac{1}{25x^2} - \frac{1}{20xy} + \frac{1}{16y^2}\right)$$

Answer:

=

Q4 Show that $(x^2 + 1)(y^2 + 4) (xy - 2)^2 + (2x + y)^2$

Q1 Fully factorise $y^2 + 9y + 20$

Answer:

Q2 Fully factorise $x^2 - x - 20$

Answer: _____

Q3 Fully factorise $w^2 - 15w + 54$

Q1 Fully factorise x^2 - 16

Answer: _____

Q2 Fully factorise $2r^2 + 15r + 7$

Answer: _____

Q3 Fully factorise $5x^2 + 22x + 8$

Factorising	quadratics
--------------------	------------

Q1 Fully factorise $49h^2 - m^2$

Answer: _____

Q2 Fully factorise $7b - b^2 - 10$

Answer: _____

Q3 Fully factorise $4k^2 - 25n^2 - (2k - 5n)^2$

Q1 Fully simplify the expression $4y^5 \times 3y^2$

Answer:

Q2 Simplify $(h^{-5})^3$

Give your answer without any negative indices.

Answer: _____

Q3 Write $\frac{2t^6u}{8t^3}$ as a fraction in its simplest form.

Simplifying expressions

Q4 Fully simplify
$$\left(\frac{t^3}{u^5}\right)^2$$

Answer: _____

Q5 Write $\frac{33xy + 9x}{18x}$ as a fraction in its simplest form.

Answer:

Q6 Fully simplify
$$\frac{6a + 42}{a^2 + 11a + 28}$$

Simplifying expressions

Q1 Write $\frac{(3a)^2}{54ak}$ as a fraction in its simplest form.

Answer:

Q2 Fully simplify $(64g^8h^4)^{\frac{1}{2}}$

Answer:

Q3 Fully simplify $\frac{x+2}{2x^2-31x-70}$

Q1 Work out the values of a, b and c in the equality below.

$$\frac{2x^{20}y^4 \times 12x^4y^{26}}{(2xy^2)^3} = ax^by^c$$

Answer: a = b = c =

Q2 Work out what expression should replace the ? in the equivalent fractions below.

$$\frac{?}{12r^4(t+6)} = \frac{2n}{3r}$$

Answer: ? =

Q3
$$\frac{ax^2 + bx + c}{dx^2 - 25}$$
 simplifies to give $\frac{x-4}{2x-5}$

Work out the values of a, b, c and d in the original fraction.

Answer: a = b = c = d =

Operations with algebraic fractions

Q1 Fully simplify
$$\frac{14a}{b} \times \frac{b}{2}$$

Answer:

Q2 Fully simplify
$$\frac{6a}{v} \div \frac{2a}{5}$$

Give your answer as a fraction.

Answer:

Q3 Fully simplify the expression below to give a single fraction.

$$\frac{n+2}{5} + \frac{6n}{7}$$

Answer: -_____

Fully simplify
$$\frac{2}{5a+4} \times \frac{45a+36}{a}$$

Give your answer as a fraction.

Answer:

Fully simplify
$$\frac{6x}{(5x-7)(x+1)} - \frac{1}{5x-7}$$

Give your answer fully factorised.

nswer: ·_____

Q2

Q3 Write the following as a single fraction in its simplest form:

$$\frac{2x^2 - 11x + 12}{x + 5} \div (4x^2 - 6x)$$

Give your answer fully factorised.

Answer:

Q4 Fully simplify $\frac{4ab^2}{k} \times \frac{3ak}{12k} \times \frac{7}{5ab}$

Give your answer as a fraction.

Answer: _____

Operations with algebraic fractions

Q1 Fully simplify
$$\frac{7}{36-x^2} - \frac{3}{6+x}$$

Give your answer fully factorised.

Answer:

Write the following as a single fraction in its simplest form:

6 -
$$(x + 4) \div \frac{x^2 + 11x + 28}{x - 7}$$

Give your answer fully factorised.

Answer: _____

Q2

Q1 Find the two solutions to the equation

$$(x-9)(x+5)=0$$

Answer: _____

Q2 Solve this equation by factorising:

$$y^2 + 3y - 10 = 0$$

Answer: _____

Q3 Solve this equation by factorising:

$$12 - 8w + w^2 = 0$$

Solving quadratic equations

Q4 Using the quadratic formula, solve

$$4x^2 + 16x + 15 = 0$$

Answer:

Q5 Solve this equation by factorising:

$$2m^2 - 11m + 5 = 0$$

Answer: _____

Q1 Using the quadratic formula, solve $y^2 - 6y + 7 = 0$

Give your answer in the form $a \pm \sqrt{b}$

Q2 Solve the equation below using factorising.

$$6y^2 - 11y - 10 = 0$$

Q3 Using the quadratic formula, solve $6x^2 - 35 = -11x$

Answer:

Q4 Solve 3r(3r-4) = 2

Give your answers to 2 d.p.

Answer: _____

Q1 Solve x(x+4) - 4(5x+9) = 0

Answer:

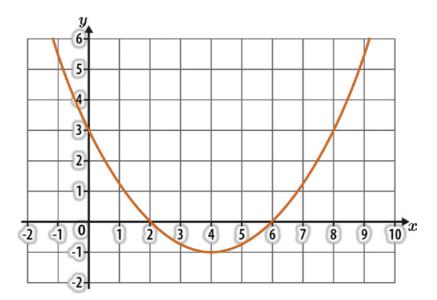
Q2 Jessica thinks of a positive number, n, which is less than 1 She adds this number to its reciprocal and gets 2.9

Work out the value of n. Give your answer as a fraction in its simplest form.

Solving quadratic equations

Solve
$$\frac{4}{y-1} - \frac{5}{y+2} = \frac{3}{y}$$

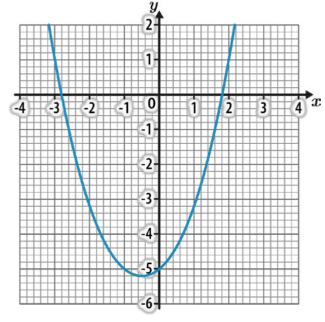
Answer:


Q4
$$x = \frac{-3 \pm \sqrt{29}}{2}$$

There is only one equation of the form $x^2 + bx + c = 0$ that gives these values of x as solutions.

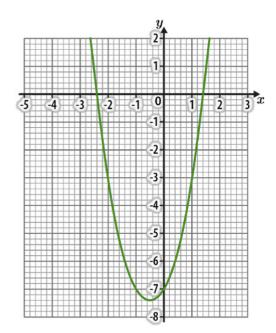
Work out the values of b and c.

Answer: $b = \cdots$ $c = \cdots$


Q1 Write down the coordinates of the roots of the quadratic curve shown below.

Answer: (_____, , _____) and (_____, , _____)

Q2 Here is the graph of the function $y = x^2 + x - 5$


Estimate the solutions to $x^2 + x - 5 = 0$ Give your answers to 1 d.p.

Answer: _____

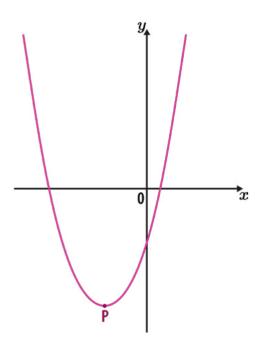
Q3 The diagram below shows the graph of the function $y = 2x^2 + 2x - 7$

Work out the solutions to $2x^2 + 2x - 7 = -3$

Answer:

Q4 a) Write $x^2 + 6x + 11$ in the form $(x + c)^2 + d$, where c and d are numbers.

Answer: a)


b) Hence, write down the coordinates of the turning point on the curve $y = x^2 + 6x + 11$

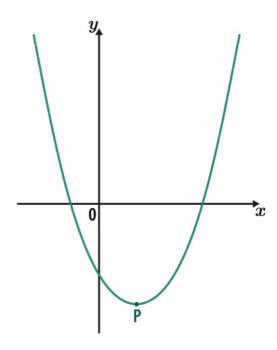
Answer: b) (______,,____)

Q1 The diagram below shows a sketch of the curve $y = x^2 + 8x - 10$

P is the turning point of the curve.

Work out the coordinates of P.

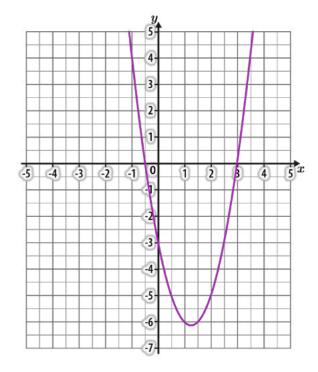
Answer: (______, , _____)


Q2 Work out the coordinates of the turning point of the curve $y = x^2 - 5x + 1$

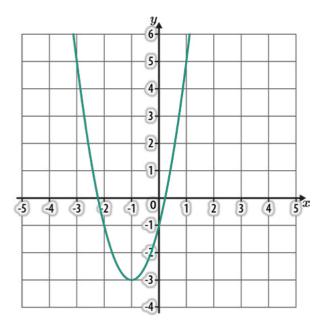
Answer: ($_{_}$, $_{_}$)

Q3 The diagram below shows a sketch of the curve $y = 3x^2 - 6x - 10$

P is the turning point of the curve.


Work out the coordinates of P.

Answer: (______, , ______)


Q4 The diagram below shows the graph of $y = 2x^2 - 5x - 3$

Use the diagram to estimate the solutions to $2x^2$ - 5x - 3 = -2x + 2 Give any decimal answers to 1 d.p.

Q1 The diagram below shows the graph of $y = 2x^2 + 4x - 1$ The equation $2x^2 + 4x - 1 = k$ has solutions at x = -3 and x = 1

What is the value of k?

Answer: k = _____

A curve has the equation $y = x^2 + ax + b$, where a and b are numbers. The turning point of the curve is (5, 4)

Work out the values of a and b.

- Q3 A curve has the equation $y = -x^2 + 16x 65$
 - a) Work out the turning point of the curve.

Answer: a) (______, , _____)

b) By considering the position of the turning point and the shape of the curve, work out how many real roots $y = -x^2 + 16x - 65$ has.

Answer: b)

Q1 Solve the following simultaneous equations:

$$6x + y = 22$$

$$2x + y = 10$$

Answer:
$$x = y = y$$

Q2 Solve the following simultaneous equations:

$$7x - 4y = 20$$

$$2x + 4y = 16$$

Answer:
$$x = y = \dots$$

Q3 Solve the following simultaneous equations:

$$15a - 4b = 25$$

$$5a + 2b = 25$$

Answer:
$$a =$$
______ $b =$ ______

Q4 Solve the following simultaneous equations:

$$2x + 3y = 8$$

$$3x + 4y = 11$$

Answer:
$$x = y = y$$

Q1 Solve the following simultaneous equations:

$$7x + 5y = 8$$

$$3x - 2y = -9$$

Answer:
$$x = y = y$$

Q2 Solve the following simultaneous equations:

$$6x + 7y = 5$$

$$9x + 13y = -10$$

Answer:
$$x = y = y = y$$

Q3 Solve the following simultaneous equations:

$$7y + 2x = \frac{23}{2}$$

$$5y + 3x = 9$$

Answer:
$$x = y = y$$

Q4 Solve the following simultaneous equations:

$$4.6t + 8.1u = 104$$

$$3.8t - 2.7u = -8$$

Answer:
$$t = u = u$$

Q1 Solve the following simultaneous equations:

$$3x = 3 - 4y$$

$$12y + 11 = -5x$$

Answer:
$$x = y = y = y$$

Q2 Find the values of x, y and a by solving the following simultaneous equations:

$$6x - 7y = -10$$

$$12x - 5y = 16$$

$$2x + ay = 10$$

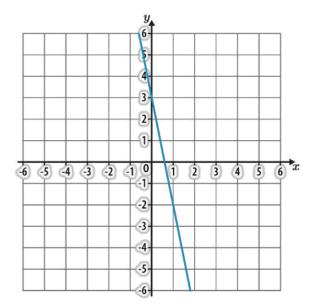
Answer:
$$x =$$
 $y =$ $a =$

Q3 Solve the following simultaneous equations:

$$\frac{4}{7x-4} = \frac{1}{6y}$$

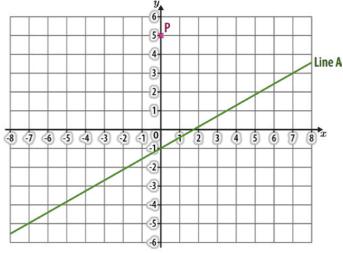
$$\frac{5x}{3y+2} = 4$$

Answer:	<i>x</i> =	 <i>y</i> =	


Q4 Solve the following simultaneous equations:

$$2^x = 4^{(7-2y)}$$

$$3^{(5x-13y)} = 81$$


Answer: x = y = y = y

Q1 Work out the equation of the straight line shown below.

Answer:

Work out the equation of the straight line that is parallel to line A and passes through point P.

Answer:

Q3 Line A has the equation 2y - 10 = 16xLine B is perpendicular to Line A.

What is the gradient of Line B?

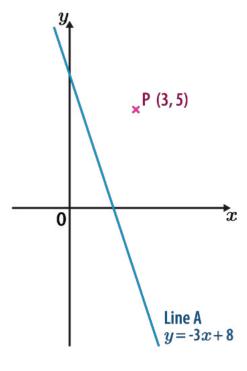
Answer:

A straight line has a gradient of 3 and passes through the point (2, 10)

Work out the equation of the line.

Answer:

Q5 Work out the equation of the straight line that passes through (2, 3) and (5, 18)

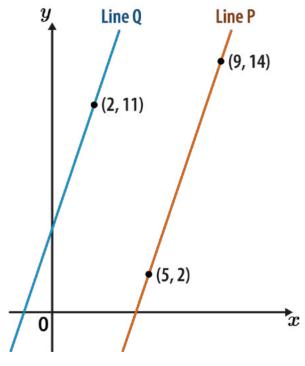

nswer:

Q1 A straight line has a gradient of $-\frac{3}{4}$ and passes through the point (32, 12) Work out the equation of the line.

Answer	
AIISWEI.	

Q2 The diagram below shows point P and Line A.
Line B is **perpendicular** to line A and passes through point P.

What is the equation of line B?


Answer:

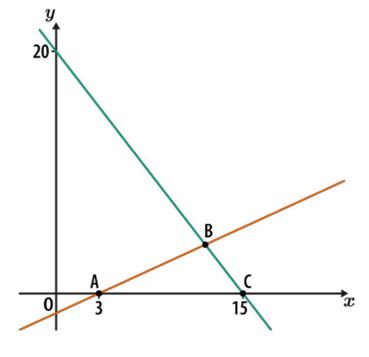
Work out the equation of the straight line that passes through (1, -7) and (6, 8)

Answer:	

Q4 The graph below shows line P and line Q. Line Q is **parallel** to line P.

What is the equation of line Q?

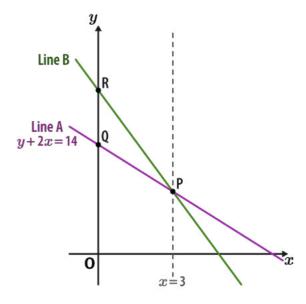
Answer: _____


Write an expression, in terms of h, for the gradient of a line **perpendicular** to the line segment joining (3h, 20) to (6h, 8)

Give your answer as a fully simplified fraction.

Answer:	

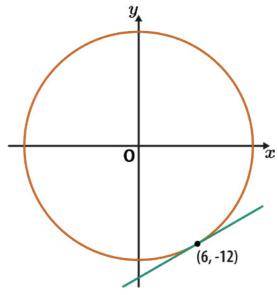
Q2 The triangle ABC has an area of 24 square units.


What are the coordinates of point B?

Answer: (_....., , _....)

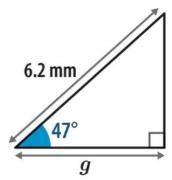
Q3 Line A has the equation y + 2x = 14The gradient of line B is twice the gradient of line A.

Work out the ratio of the length of OQ to the length of OR. Give your answer in its simplest form.



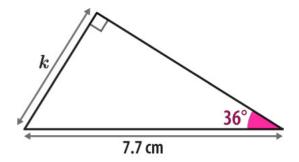
Answer:

Q4 A circle, centre O, passes through the point (6, -12), as shown.


Work out the equation of the tangent to the circle at this point.

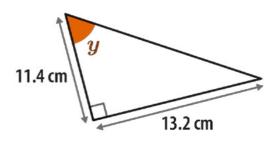
Give your answer in the form y = mx + c, where m and c are integers or fractions in their simplest form.

Answer:

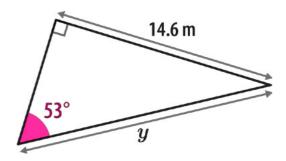

Work out the length *g*. Give your answer to 1 d.p.

Not drawn accurately

Answer: m	ım
-----------	----

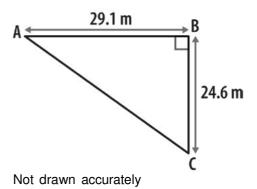

Q2 Work out the length k. Give your answer to 1 d.p.

Not drawn accurately

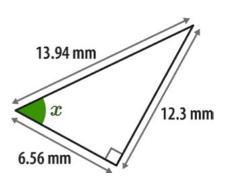

Answer	. Cr

Q3 Calculate the size of angle *y*. Give your answer to the nearest integer.

Answer:	۰.

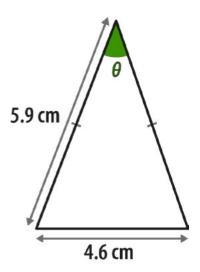

Q1 Calculate the length *y*. Give your answer to 2 d.p.

Not drawn accurately

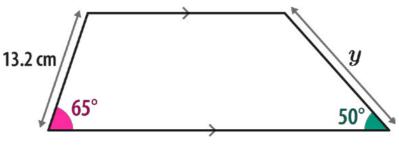

Answer:			m

Q2 Calculate the size of angle BAC. Give your answer to 1 d.p.

Answer:	
AIISWEI.	

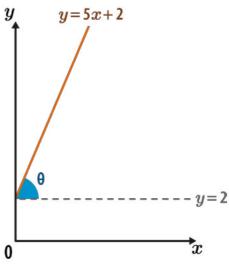

Q3 What is the size of angle x? Give your answer to 1 d.p.

Not drawn accurately


Answer:	0

Q1 Calculate the size of angle θ . Give your answer to 1 d.p.

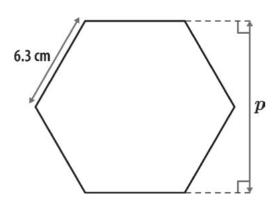
Not drawn accurately


Work out the length y. Give your answer to 2 d.p.

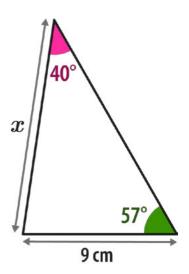
Answer:	 cm
Answer:	 cm

Q3 The graph below shows the line with equation y = 5x + 2The axes both have the same scale.

Calculate the size of angle θ . Give your answer in degrees to the nearest integer.

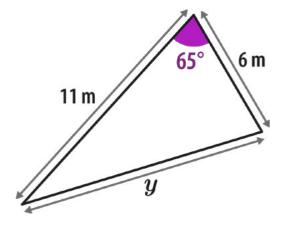


Not drawn accurately

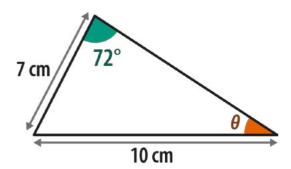

Answer:

Q4 The shape below is a regular hexagon.

Use trigonometry to calculate the distance p. Give your answer in centimetres to 2 d.p.

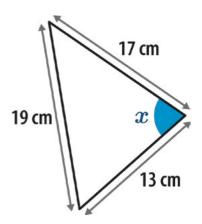

Using the sine rule, calculate the length x. Give your answer to 1 d.p.

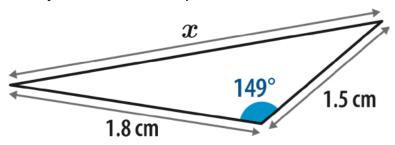
Not drawn accurately


Answer:		cm
---------	--	----

Q2 Using the cosine rule, work out the length y. Give your answer to 1 d.p.

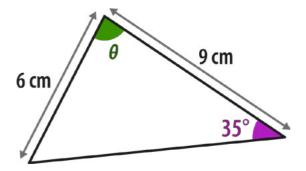
Not drawn accurately


Q3 Use the sine rule to calculate angle θ . Give your answer to 1 d.p.

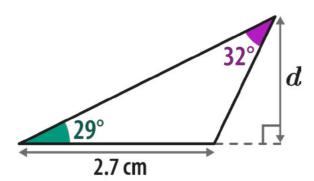

Not drawn accurately

Answer:	C
AIISWEI.	

Use the cosine rule to calculate the size of angle x. Give your answer to the nearest degree.

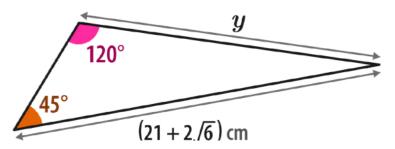


Work out length x.
Give your answer to 1 d.p.


Not drawn accurately

Q2 All the angles in the triangle below are acute. Calculate the angle θ to 1 d.p.

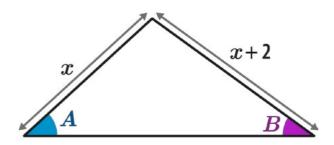
Answer:	0


Q1 Calculate the length d. Give your answer to 2 s.f.

Not drawn accurately

Answer:	cm
, 11 10 VV C1 .	 ٠

Q2 Work out the length y in the triangle below. Give your answer in its simplest form, rationalising the denominator if necessary.

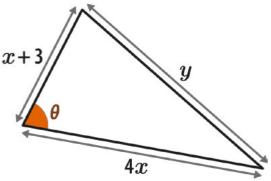


Answer: cr	m
------------	---

Q3 Using the information below, work out the value of x.

$$\sin A = \frac{4}{5}$$

$$\sin B = \frac{3}{4}$$

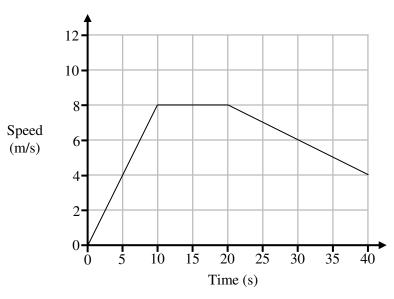


Not drawn accurately

Answer:	

Q4 Given that $\cos \theta = \frac{1}{8}$ in the triangle below, show that $y^2 = ax^2 + bx + c$ where a, b and c are numbers.

What are the values of a, b and c?



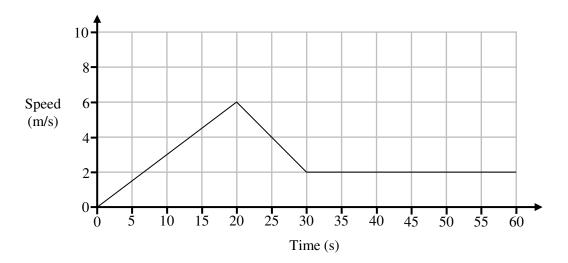
Not drawn accurately

Answer: a = b = c =

Speed Time Graphs

1 Here is a speed-time graph for a 40 second journey.

(a) Work out the acceleration during the first 10 seconds. State the units of your answer.


(2)

(b) Work out the total distance travelled.

.....m

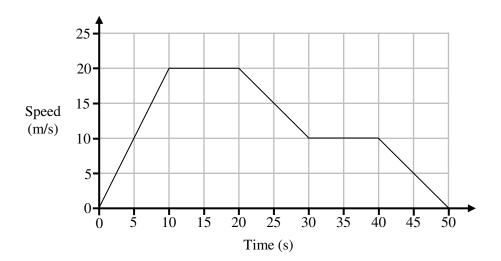
(Total for Question 1 is 5 marks)

2 Here is a speed-time graph for a 1 minute journey.

(a) Write down the acceleration in the second half of the journey.

 	m/s ²
(1)	

(b) Work out the acceleration during the first 20 seconds.


......m/s²

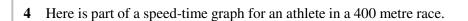
(c) Work out the total distance travelled.

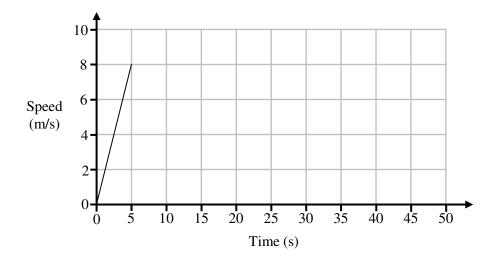
.....m

(Total for Question 2 is 5 marks)

3 Here is a speed-time graph for a 50 second journey.

Use words from the box above to complete each of the statements below. You may use a word more than once.


Between 0 and 10 seconds the speed is _____ and ____


Between 0 and 10 seconds the acceleration is

Between 10 and 20 seconds the acceleration is

Between 20 and 30 seconds the acceleration is _____

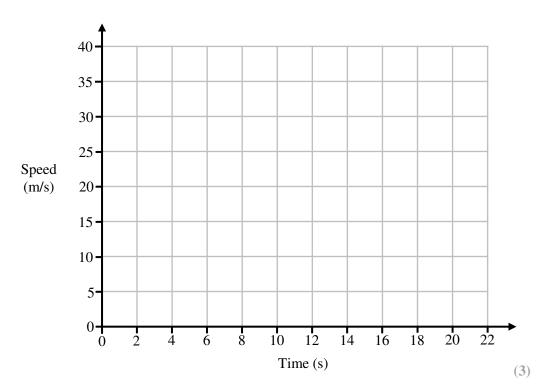
(Total for Question 3 is 5 marks)

(a) Work out the acceleration of the athlete in the first 5 seconds.

......m/s²

(b) After the first 5 seconds the athlete runs at a constant speed to the end of the race.

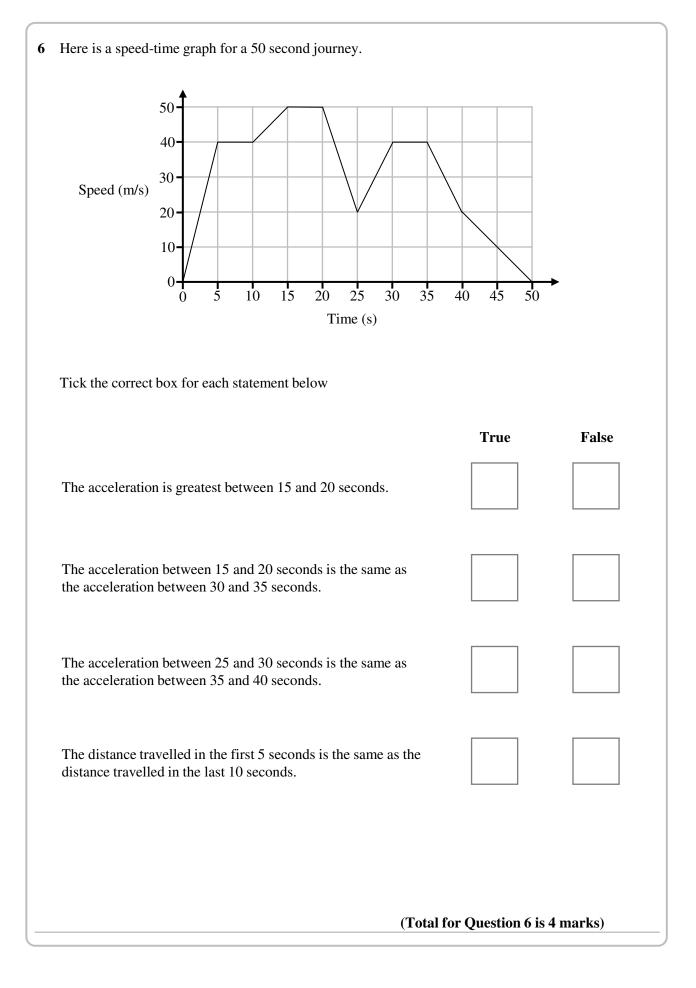
Work out the total time taken for the athlete to complete the 400 metre race.

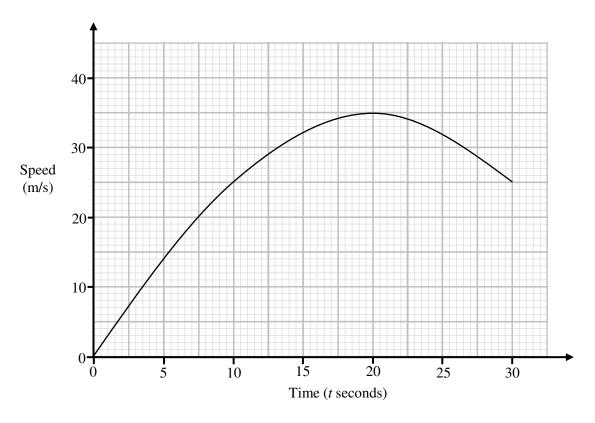

seconds

(Total for Question 4 is 4 marks)

5 A car accelerates from rest with a constant acceleration 5 m/s² for 6 seconds.

The car then travels at a constant speed for a further 8 seconds before decelerating at 7.5 m/s^2 until it comes to rest.


(a) Draw a speed-time graph for the car onto the grid below.


(b) Work out the total distance travelled by the car.

.....m

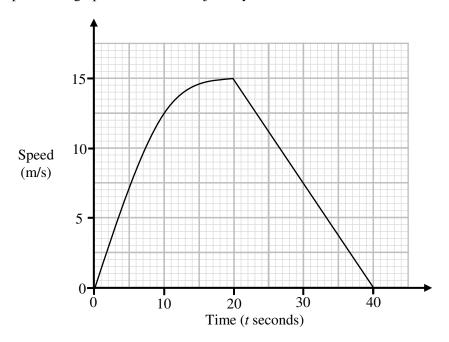
(Total for Question 5 is 5 marks)

7 Here is a speed-time graph for a 30 second journey.

(a) Work out an estimate for the acceleration when t = 15 seconds.

 	m/s ²
(2)	

(b) Work out an estimate for the distance travelled in the first 20 seconds. Use 4 strips of equal width.


.....m

(Total for Question 7 is 5 marks)

Here is a speed-ti	ime graph for an athlete during a race.
	8
	6-
Speed (m/s)	4-
	0 5 10 15 20 Time (t seconds)
Work out an	inishes the race in 20 seconds. estimate for the distance of the race. of equal width.
	m
(b) Is your answer to part (a) and underestimate or an overestimate. Give a reason for your answer.	

(Total for Question 8 is 5 marks)

9 Here is a speed-time graph for a 40 second journey.

(a) Show clearly that the distance travelled in the first half of the journey is greater than the distance travelled in the second half of the journey.

(2)

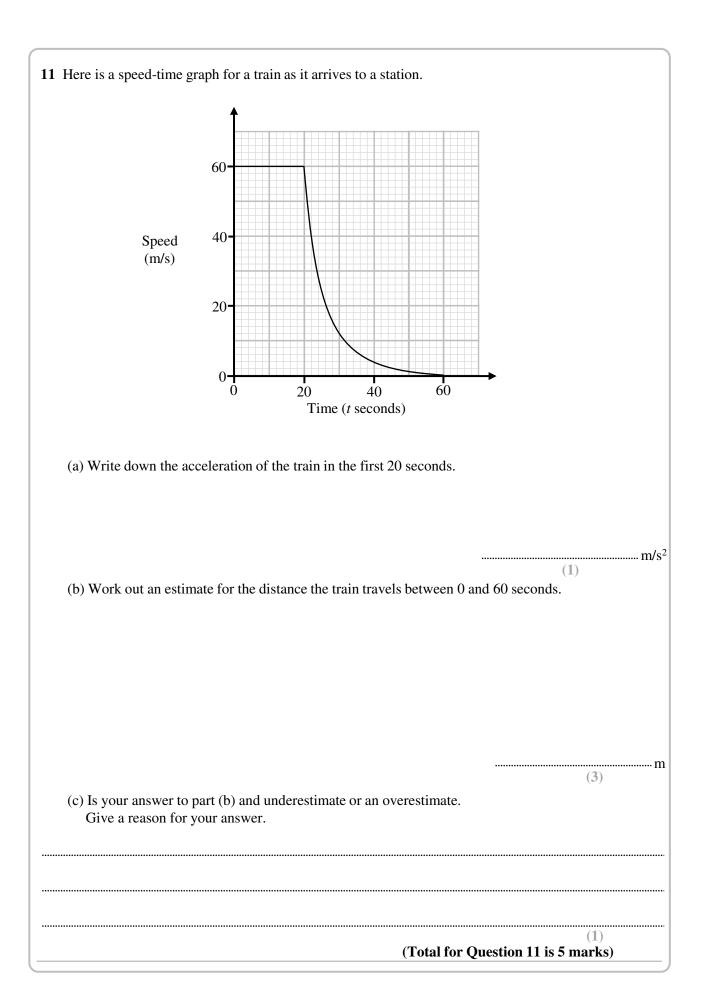
(b) Work out the average acceleration for the first half of the journey.

.....m/s²

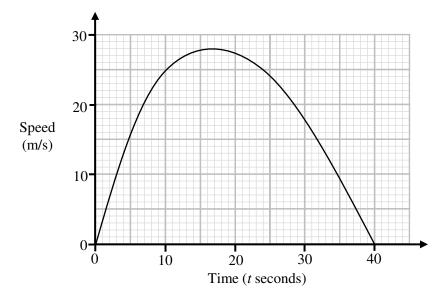
(2)

(Total for Question 9 is 4 marks)

10 Here is a speed-time graph for the first 4 minutes of an aeroplane's flight.



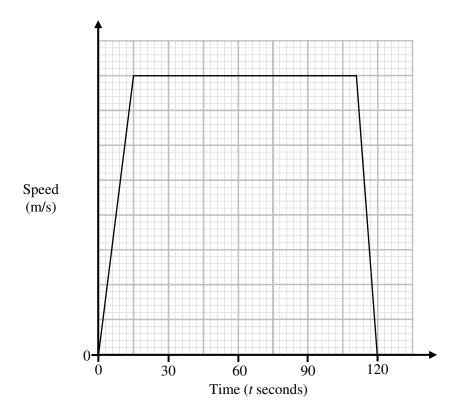
(a) Work out the average acceleration for the first 4 minutes. Give your answer in m/s²


m/	c
(2)	
(Z)	

(b) How many seconds into the flight was the acceleration of the aeroplane equal to the average acceleration for the first 4 minutes.

seconds

12 Here is a speed-time graph for a 40 second car journey.

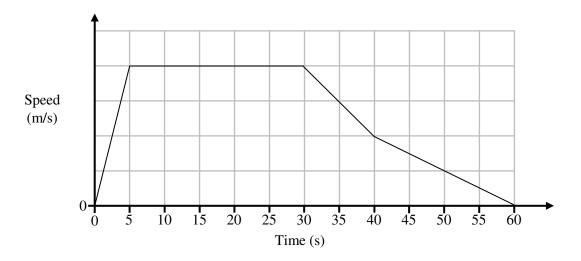

(a) After how many second was the acceleration zero?

	seconds
(1)	

(b) The car is travelling on a road with a speed limit of 90 km/h Work out percentage of the 40 second journey that the car was above the speed limit.

.....%

13 Here is a speed-time graph for a super car during a 2 minute journey.


The total distance travelled by the super car is 8.64 km

Work out the acceleration of the super car in the first 15 seconds.

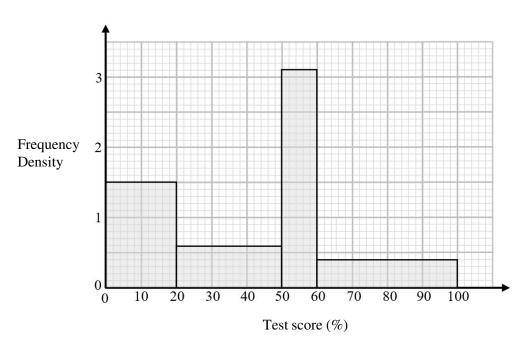
.....m/s²

(Total for Question 13 is 4 marks)

14 Here is a speed-time graph for Tommy as he walks from his house to the docks.

(a) At what time is Tommy halfway between his house and the docks?

 	seconds
(4)	


(b) The total distance between Tommy's house and the docks is 320 metres. Work out the maximum speed that Tommy reaches on his way to the docks.

.....m/s

(Total for Question 14 is 7 marks)

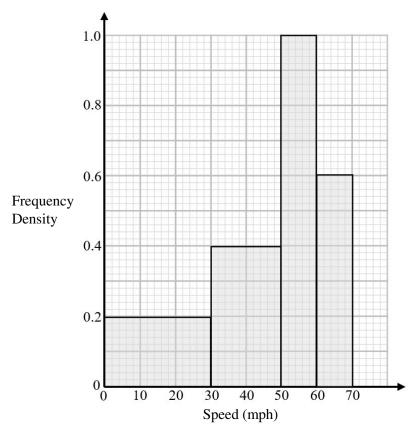
Interpreting Histograms

1 The histogram shows information about the test scores S, as percentages, for some students.

(a) Complete the frequency table for this information.

Test Score, S (%)	Frequency
$0 \le S \le 20$	
20 < S ≤ 50	
50 < S ≤ 60	
60 < S ≤ 100	

(2)


(b) Work out an estimate for the number of students who scored more than 70% in the test.

	students
(4)	

(2)

(Total for Question 1 is 4 marks)

2 The histogram shows information about the speed of 30 vehicles travelling on a road.

The speed limit on the road is 60 mph.

(a) Work out the percentage of the vehicles that were exceeding the speed limit.

	%
(2)	

(b) Work out an estimate for the mean speed of the 30 vehicles.

..... mph

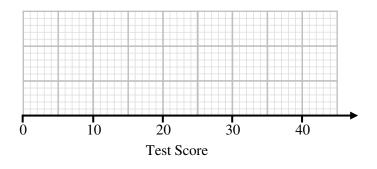
(Total for Question 2 is 7 marks)

The histogram shows information about the times spent waiting at an emergency department. 0.8 0.6 Frequency Density 0.4 0.2 10 20 30 50 60 80 90 100 (a) Work out an estimate for the median time spent waiting. minutes **(2)** (b) Work out an estimate for the interquartile range of the times spent waiting. minutes

(Total for Question 3 is 5 marks)

Box Plots and Quartiles

1 The test scores of 19 students in a science class are shown below.

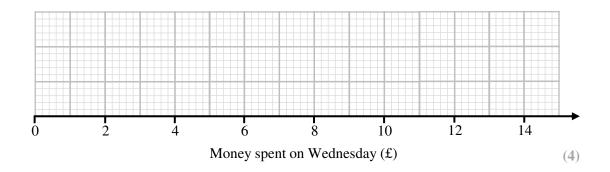

32	29	20	24	40	38	21	25	20	30
23	22	35	13	31	19	15	36	38	

(a) Complete the table.

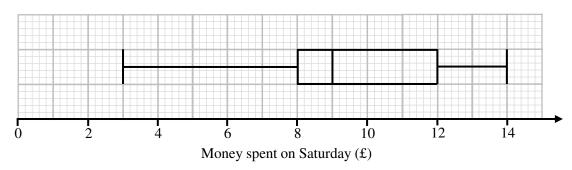
Lowest Score	
Lower Quartile	
Median	
Upper Quartile	
Highest Score	

(2)

(b) Use your table to draw a box plot of the test scores of the 19 students.


(2)

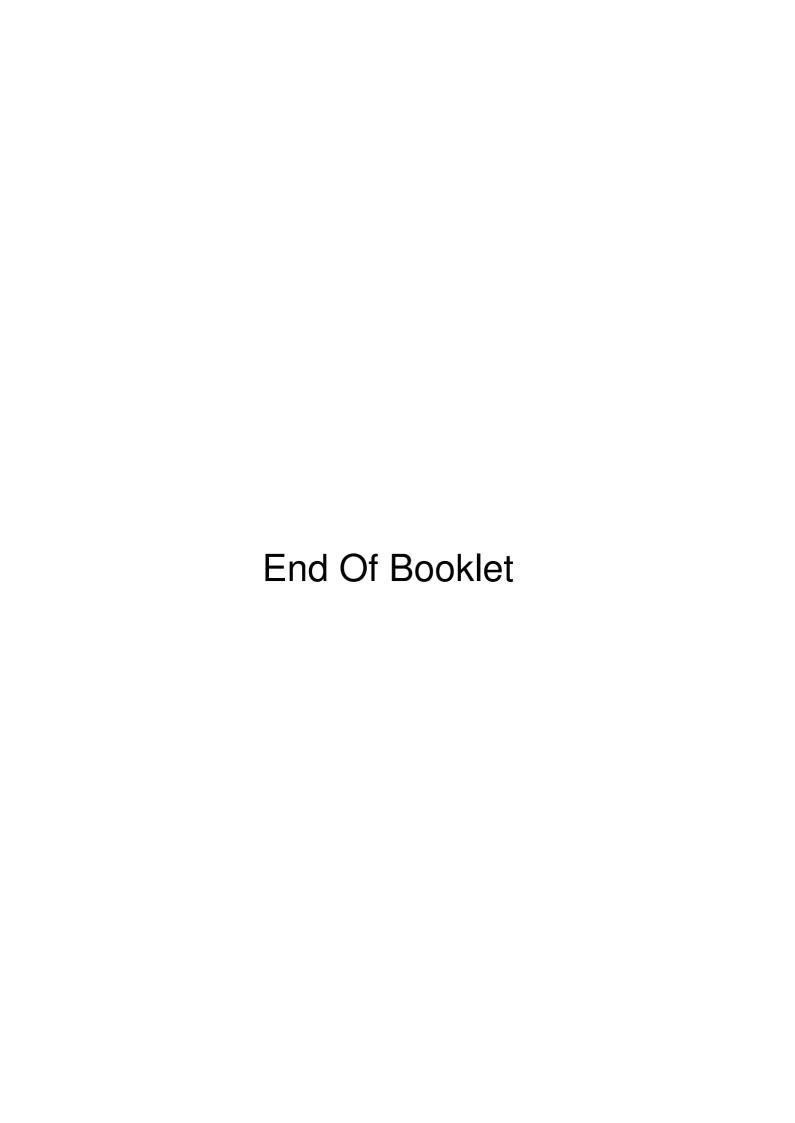
(Total for Question 1 is 4 marks)


2	A shopkeeper collected information on how much money (to the nearest pound) 23 customers
	spent in their shop on a Wednesday.

£2 £6 £3 £4 £3 £3 £4 £5 £6 £9 £12 £3 £10 £11 £3 £1 £3 £6 £2 £4 £5 £9 £3

(a) Draw a box plot for the money spent by customers on Wednesday.

The box plot below shows information about how much customers spent in the same shop on a Saturday.


(b) Compare the distributions of money spent by customers on Wednesday and Saturday.

(Total for Question 2 is 6 marks)

Conditional Probability

1	There are 4 blue counters and 5 yellow counters in a bag.
	Two counters are taken at random from the bag.
	Work out the probability that both counters taken are the same colour.
	(Total for Question 1 is 4 marks)
	(Total for Question 1 is 4 marks)

2	Students who arrive late to school must enter through the late gate.
	P(the first student to arrive late is in Year 11) = 0.4
	For all students after the first student to arrive,
	If the previous student was in Year 11, P(this student is in Year 11) = 0.75 If the previous student was not in Year 11, P(this student is in Year 11) = 0.1
	(a) Work out the probability that the first student is in Year 11 and the second is not.
	(2)
	(b) Work out the probability exactly two of the first three students are in Year 11.
	(4)
	(Total for Question 2 is 6 marks)

